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Abstract

Injections of nonrelativistic electron heams from an isolated equipotential conductor
into a uniform background of plasma and neutral gas have been simulated using a two-
dimensional electrostatic particle code. The ionization effects on spacecraft charging are
examined by including interactions of electrons with neutral gas. The simulations show that
the conductor charging potential decreases with increasing neutral background density due to
the production of secondary electrons near the conductor surface. In the spacecraft wake, the
background electrons accelerated towards the charged spacecraft produce an enhancement of
secondary electrons and ions. Simulations run for longer times indicate that the spacecraft
potential is further reduced and short wavelength beam-plasma oscillations appear. The
results are applied to explain the spacecraft charging potential measured during the SEPAC

experiments from Spacelab 1.



INTRODUCTION

Nonrelativistic electron beams have heen injected from rockets and the Space shuttle
to study beam propagation, instabilities and other space plasma problems in the ionosphere
[1]. Several experimental and theoretical studies have focused on the spacecraft charging
phenomenon during the electron beam injection [2] {5]. At low beam current, Spacelab 2
experiments indicated that electron heams can propagate away after beam degradation and
expansion [6]. However, at high beam current, Space Experiments with Particle Accelera-
tors (SEPAC) during the Spacelab 1 mission indicated that the electron beam injection had
charged the spacecraft to a potential as high as the beam energy, which was 5 keV [2]. Neu-
tralization of spacecraft charging is therefore important for allowing the injected electron
beam to propagate away. SEPAC experiments have suggested that a large conductor surface
area for collecting currents from ambient plasma will reduce spacecraft charging.

It is also well known that neutral gas ionization by the electron beam can help neutralize
spacecraft charging. At altitudes below 160 km where neutral densities are high, electron beam
experiments on sounding rockets indicate that payload charging was reduced and sometimes
even completely neutralized [7]. Plasma enhancement associated with Beam Plasma Discharge
(BPD) [8] is believed to be responsible for the charging neutralization of sounding rockets.
During SEPAC electron beam experiments Marshall et al. [5] reported anomalous features in
the measurement of return current by Langmuir probe when an energetic electron beam was
injected into a dense cloud of Argon gas. They interpreted the anomalous current signature
as due to secondary electron fluxes escaping from the spacecraft and the formation of a double

layer structure. In all cases of SEPAC experiments the spacecraft potential charged by an



electron beam was small relative to the beam energy when neutral gas is present.

The purpose of this paper is to model the effects of neutral gas ionization on spacecraft
charging due to electron beam injection. We use a two-dimensional electrostatic particle code
to simulate the injection of electron beams from an isolated equipotential conductor into
uniform background of plasma and neutral gas. In this preliminary study we examine how
the spacecraft charging potential varies with neutral density.

Several simulation studies have examined the general relationship between the space-
craft charging and the electron beam injection in the ionosphere (9] [13]. These studies show
that the positively charged spacecraft attracts the ambient and beam electrons to neutralize
the charging partially. Some electrons in the beam head, however, are accelerated forward
and propagate away. Winglee and Prichett [14] indicate that the spacecraft charging potential
varies with the the injection angle of the beam relative to the magnetic field lines. Further-
more, the spacecraft charging potential exceeds the beam energy when the spacecraft surface
is small relative to the return current region. Examining the surface effects of the spacecraft,
Lin and Koga [15] model the production of backscattered and secondary electrons generated
at the conductor surface. Their simulations indicate the spacecraft potential increases with
the reflection coefficient, which is defined as the ratio of electrons reflected from the spacecraft
surface.

Simulations of the interactions of an electron beamn with neutral gas are difficult because
they require a large memory and a long computation time. In this conference Winglee [16]
examines the effects of a neutral gas cloud in the vicinity of the spacecraft on the beam

propagation and charging. In this study, we consider a uniform neutral gas background.
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Furthermore, we assume that the electrons are scattered isotropically by neutral gas whereas

Winglee [16] emphasizes small angle scattering.

SIMULATION MODEL

To study electron beam injection from a conductor, we modified a 2-D particle-in-cell
code DARWIN, which was originally developed at Los Alamos National Laboratory [17].
Here we present the simulation results in the electrostatic limit. We improve the modeling
by considering (1) the injection of an electron beam from a finite isolated conductor and (2)
collisional ionization of neutrals by beam, background, and secondary electrons. Figure |
illustrates the simulation geometry.

We model the spacecraft as a rectangular conductor within the simulation system, which
injects electrons from the spacecraft surface every timestep. The number of injected electrons
per time step per cell is N.(ny/n.)vpsAt where N, is the number of ambient electrons per
cell, At is the simulation time step, and ns/n. is the ratio of the beam density to background
density. We assign the positions of the injected particles as z = RuvyAt where x is the distance
from the conductor surface, v, is the injection velocity, and R is a random number between
0 and 1 for each injected particle. In the y direction we randomly distribute the injected
particles across the beam. Therefore the injected particles fill in the fan between & = 0 and
¢ = vyAt. In this study we assume that the spacecraft surface absorbs all particles striking
the surface and accumulates the charge.

We use the capacity matrix method [18] to treat the spacecraft surface as a finite isolated

equipotential conductor in a background plasma. The capacity matrix (' relates the charge,



g, on each grid point on the spacecraft to the corresponding potential ®; through

5= Y0, (1)
J

where the sum j is over every grid point on the spacecraft. The capacity mat rix is obtained
by placing a unit charge on one point of the spacecraft surface with all other points zero and
then solving for the potential. The values of the potential at each point on the spacecraft
represent one column in the inverse capacity matrix A = (’~!. Repeating the process for cach
node then generates the full inverse matrix. The capacity matrix is obtained from the inverse
of this matrix. This process is carried out only once at the beginning of the program. During
the program the code first solves Poisson’s equation for the electric potential ®, with the
charge evenly distributed on the spacecraft surface. Second, it uses the capacity matrix of the
conductor to redistribute the charge and maintain the spacecraft surface at an equipotential

using the formulae:

Agi =3 Cij(®ey — B0)) (2)
J

o, = Z Cii®o;/ Z Cy (3)
13 13

where Ag; is the charge that is added to each grid point on the spacecraft. Using the redis-
tributed charge density, the code again solves Poisson’s equation for the electric potential of
the spacecraft.

We use a periodic boundary condition for the lower boundary at y = 0 and the upper
boundary at y = L, where L, is the simulation length in the y direction. The electrostatic

potential at z = 0, ¢(z = 0,y), is constant. We assume the potential is zero at the right



boundary at = L, where L, is the simulation length in the x direction. The right boundary
condition approximates the potential at the infinity.

In our model we include the interaction of beam, background, and secondary electrons
with neutral particles following the approach of Machida and Goertz [19]. The neutral par-
ticles are assumed uniformly distributed through the system. To allow the simulations to
run for much longer times, a very high density neutral region is added at the right hand side
of the simulation box. Beam electrons entering into this region are slowed down enough by
collisions so that they are not reflected back into the simulation box with high velocities. All
neutral particles are assumed to have a Maxwellian velocity distribution.

The ionization rate of the neutral particles is determined from the incoming electron
velocity, the neutral density, and the ionization collisional cross section. The ionization colli-
sional cross section varies with the incoming electron energy according to a fit to an experi-
mental curve for Oy [20]. We first calculate the ionization cross section based on the particle’s
energy and then calculate the average collisional ionization frequency from the cross section.
Assuming that the event occurrence follows an exponential probability distribution, we as-
sign a probability P; of collisional ionization to the beam electrons at each time step from the
collision frequency. The probability is then compared with a uniform set of random numbers
R; between 0 and 1. A collision occurs if P; > R;.

A fixed ionization energy is subtracted from the incident particle energies after the
collision. The velocity vectors of the electrons and ions after the collision are calculated from
momentum conservation, energy conservation, and the assumption that the collisions are

head on. Random directional angles are assigned to the particles after the collision. Other
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collisional processes can be handled in the same way as ionization collisions by using the
appropriate collision frequency.

Background plasma ions and electrons are initialized uniformly in the system with a
uniform magnetic field in the @ direction. Both the background ions and clectrons have
Maxwellian velocity distributions with the same temperature, 7. = T; where T, and T; are
the electron and ion temperatures, respectively. At the right and left boundary, the code

specularly reflects all particles.

SIMULATION RESULTS

The simulation uses a 512A x 128A grid in the x and y directions respectively. The
spacecraft is represented by a rectangular box centered on r = 102A and y = 64A with
size 4A x 32A in the z and y directions respectively. The grid size, A, equals the Debye
length of the ambient electrons defined as Ag = a./wye where a. = ('.ZTG/mE)l/2 is the thermal
velocity of the ambient electrons and w,. is the ambient electron plasma frequency. In the
simulations a. = 0.001¢ where ¢ is the speed of light, a unit of the simulation. We choose the
secondary ion to electron mass ratio to be 1836. We assume the electron gyrofrequency Qe
to be 0.5w,., which is close to the ionospheric value of 0.3w,.. The simulations use a time
step At = 0.05w,.! and 131,072 particles for the background plasma. The electron beam has
a width of 2A, an injection velocity of v, = 10a., and zero thermal velocity. In this study,
the density ratio ny/n, is 10 where n, and n, are the densities of the electron beam and the

ambient electrons, respectively. In SEPAC experiments this ratio was approximately 100 for

a 100 mA beam.
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Figures 2 and 3 present the modeling results of an electron beam with no neutral
background. The phase space plot at w,! = 30 indicates that the stagnation point of the
injected electron beam is very close to the conductor surface (Iigure 2a). Also it shows that
beam electrons at the front are accelerated to velocities above the initial beam velocity, due to
the buildup of beam electrons behind the front of the beam head. Figure 2b, the configuration
space plot, shows that the electron beam expands radially due to mutual repulsion. The
beam expands a maximum width of 40A near the spacecraft surface. 1'igure 3 shows the time
variation of the spacecraft potential for the duration of the simulation. The oscillations in
the potential correspond to the background plasma frequency. Note that after the quick rise
in the potential to 75% of the beam energy the average potential is approximately 70% of the
beam energy.

Figures 4-6 present results of an electron beam injected into a uniform background of

3 corresponding to a pressure of

neutral particles. The neutral number density is 10 cm~
10~* Torr at room temperature. The beam phase space plot at w,.t = 30 in Figure 4a shows
that the stagnation point of the beam is farther away from the spacecraft than the case
with no neutral background. The beam electrons travel farther before being substantially
slowed down because secondary electrons created from ionization of neutrals impinge on the
spacecraft and reduce the charge. The configuration spé.ce plot in Figure 4b shows beam
expansion similar to the case with no neutral background at wy,t = 30. The maximum width
remains at about 40A. The phase space plots of secondary electrons are shown in Figure 5.

Figure 5a indicates that some secondary electrons near the spacecraft have been scattered

to energies comparable to the beam energy. Most secondary electrons are produced near the



spacecraft surface while some are produced in the wake region of the spacecraft, as shown
in the configuration space plot (I'igure 5b). Secondary electrons are produced in the wake
as background electrons are accelerated towards the charged spacecralt and ionize neutral
particles. Figure 6 presents spacecraft potential as a function of time. The oscillations in
the potential again correspond to the background plasma frequency. After a quick rise in the
potential to 75% of the beam cnergy, the average potential energy of the spacecraft drops to
about 40% of the beam energy. This reduction in the potential is caused by the increase in
plasma density around the spacecraft from ionizations. Figure 7 shows spacecraft potential
at wy.t = 30 for various values of background neutral density. This figure indicates that
increasing the neutral density reduces the spacecraft potential. Two factors contribute to the
reduction in the charging potential. First, higher neutral densities result in more collisional
ionizations and therefore a larger number of secondary electrons to neutralize the spacecraft.
Second, higher neutral densities result in shorter mean free paths for the beam electrons.
Scattering of the beam electrons occurs closer to the spacecraft and fewer beam electrons
escape. In the highest neutral density case of 10'5 cm™2, the potential is reduced to 10% of
the beam energy. Also the spacecraft potential oscillations increase in frequency due to the
large increase in the plasma density near the spacecraft.

Figure 8 shows phase space plots of beam and secondary electrons from a long simulation
run, wye! = 60. The neutral density is 10" cm™, the same as in Figures 4-6. At wpet = 60,
many beam electrons have been scattered by collisions to lower velocities (Figure 8a). Particles
at the beam front no longer travel at velocities comparable to the initial beam velocity.

Note that newly injected beam electrons are travelling longer distances at nearly their initial

o s}



injection velocity. They set up short wavelength heam-plasma oscillations which are apparent
in the phase space plot. Figure 8b indicates that the secondary electrons are accelerated
to velocities compararble to the beam velocity within the beam-plasma oscillation regions.
These secondary electrons can be accelerated to the point where they contribute significantly
to the collisional ionizations. A history of the spacecraft potential (Figure 9) shows that the
potential is about 40% of the beam energy at w,.t = 30 and is reduced to 25% of the beam
energy at w,.t = 60. Running the simulation for a longer time results in more secondary
electrons produced near the spacecraft and also gives secondary electrons generated farther

away from the spacecraft the time to respoud to the positively charged spacecraft.

DISCUSSION

We have simulated the injection of a nonrelativistic electron beam from a finite con-
ductor with a beam density much larger than the ambient density, ny/n, = 10, and have
incorporated secondary electron and jon production due to collisional ionizations. The simu-
lation results suggest that the uniform neutral background reduces the amount of spacecraft
charging. Collisional ionization of the neutral particles by beam electrons results in an in-
crease of secondary electrons. These secondary electrons help neutralize the spacecraft. The
positively charged spacecraft accelerates background electrons to velocities high enough for
them to ionize neutral particles, producing secondary electrons and ions in the wake region
of the spacecraft. Another interesting result is that the stagnation point of the electron
beam moves farther away from the spacecraft. As the spacecraft potential reduces, the beam

electrons are able to travel longer distances before being stopped.



The simulations reported here appear because of limitation in computer time. The
simulation runs for longer time periods indicate that charging is [urther reduced at later
time. allowing newly injected beam electrons to leave the spacecraft region with nearly their
initial velocities. These electrons set up short wavelength beam-plasma oscillations which
accelerate secondary electrons to velocities close to the beam velocity.

In the future we plan to include effects from other collisional processes such as elastic
scattering, charge exchange, photoionization, and ion elastic collisions. Since the current
collision scheme assumes head on hard-sphere collisions, high velocity beam electrons can
be scattered to large angles. Therefore, we plan to improve the collision model to include
quantum mechanical effects. Another goal is to run the simulations much longer to determine

if Beamn Plasma Discharge can be observed.
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FIGURE CAPTIONS

Fig. 1. Simulation configuration.

Fig. 2. Results of simulation for ny/n, = 10 and vy/a, = 10 at w,.t = 30. (a) The beam
electron phase space in the x - v, plane and (b) the positions of beam electrons in the x
-y plane. The position is normalized by the Debye length and the velocity is normalized
the beam velocity.

Fig. 3. Time history of the conductor potential, ¢,, normalized to the beam energy F). lor
this simulation, ny/n, = 10 and v,/a. = 10,

Fig. 4. Results of simulation with a uniform neutral background for n;/n, = 10 and vp/a. = 10
at wyet = 30. (a) The beam electron phase space in the & - v, plane and (b) the positions
of beam electrons in the « - y plane.

Fig. 5. Results of simulation with a uniform neutral background (a) The secondary electron
phase space in the z - v, plane and (b) the positions of secondary electrons in the @ - y
plane.

Fig. 6. Time history of the conductor potential, ¢,, normalized to the beam energy Ey.

Fig. 7. Spacecraft potential versus neutral density.

Fig. 8. Results of simulation with a uniform neutral background at w,.t = 60. (a) The beam
electron phase space in the @ - v, plane and (b) the secondary electrons in the x - v, plane.

Fig. 9. Time history of the conductor potential, ¢,, for wy.t = 60.
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Part 2

Simulation of Radial Expansion of an Electron Beam Injected into a

Background Plasma

J. Koga and (. 5. Lin
Department of Space Sciences
Southwest Research Institute

San Antonio, Texas 78284

Abstract

A two-dimensional electrostatic particle code has been used to study the beam radial
expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor
into a background plasma. The simulations indicate that the beam radius is generally pro-
portional to the heam electron gyroradius when the conductor is charged to a large potential.
The simulations also suggest that the charge buildup at the beam stagnation point causes
the beam radial expansion. From a survey of the simulation results, it is found that the ratio
of the beam radius to the beam electron gyroradius increases with the square root of beam
density and decreases inversely with beam injection velocity. This dependence is explained in
terms of the ratio of the beam electron Debye length to the ambient electron Debye length.
These results are most applicable to the SEPAC electron beam injection experiments from

Spacelab 1, where high charging potential was observed.



INTRODUCTION

Over the past 10 years, nonrelativistic electron beams have heen injected into a back-
ground plasma and neutral gas to study beam propagation, instabilities, spacecraft charging,
and other space plasma problems in the ionosphere [I-5]. Some experiments specifically
examined the radial expansion characteristics of the beam [2-3], indicating that the beam ex-
pansion characteristics depend in a complex way on beam propagation angle and spacecraft
charging. Many simulation studies have studied the general relationship between spacecraft
charging and the electron beam injection in the ionosphere [6-12]. However, few have focused
on understanding the radial expansion phenomenon. The purpose of this paper is to report
our simulation study on the beam radial expansion.

In the Vehicle Charging and Potential (VCAP) experiment on the Space Shuttle Orbiter
mission, the STS-3 camera imaged a narrow collimation of an electron beam fired transverse to
the magnetic field for 0.3 m before the light emission of the electron heam abruptly decreased
[2-3]. The reason for the sudden decrease in light emission is unclear. However, it may
suggest that appreciable beam radial expansion seemed to occur due to an increase in the
negative charge density of the beam. After the point of beam spreading, the beam evolved
into a hollow cylindrical shell structure which propagated parallel to the local magnetic field.
The vehicle electric potential induced by these electron beam firings was normally a few volts
to a few tens of volts with a beam energy of 1 keV [2].

Space Experiments with Particle Accelerators (SEPAC) during the Spacelab 1 mission
indicated that the electron beam injection had charged the spacecraft to a potential as high

as the beam energy, which was 5 keV [5]. Because the ambient plasma cannot neutralize



the electron beam and the spacecraft, the net beam charge and the spacecraft charging are
important in this case in determining beam propagation and expansion.

In laboratory experiments, Iellogg et al. [4] studied radial expansion of electron heams
injected into a background plasma and neutral gas. When the electron gun was grounded,
the envelope of the beam was twice the beam electron gyroridus radius p, where p. = v/ Qe
for cross-field injection. For the aligned beam the radius of the envelope was ry & 0.25p..
However, when the electron gun was allowed to float and no background plasma was present,
the electron beam appeared to have a diameter approximately twice the beam electron gy-
roradius. In these cases the gun potential rose to the electron beam accelerator potential.
Therefore, charging seems to play an important role in the beam radial expansion.

Several two-dimensional simulations show that high density electron beams can prop-
agate in the plasma because the net beam charge has caused the beam to expand radially
and reduced the beam density [9-12]. In particular, Winglee and Pritchett [11] have simu-
lated cross-field and parallel electron beam injection, concentrating on moderate spacecraft
charging. For cross-field injection the beam is found to form a hollow cylinder of radius ap-
proximately equal to the beam gyroradius and width of about 2Xp, where Apy = vy/wy. The
beam width is believed to be caused by repulsive forces associated with a net negative charge
within the beam. For parallel injection slower beam electrons are overtaken, causing a net
repulsive force to push the beam electrons outward to a cylinder thickness comparable to the
cross-field injection case. The maximum perpendicular velocity was found to be comparable
to the parallel beam velocity.

Analytic calculations [13] for electron beams injected parallel to magnetic field lines



have shown that space charge effects play an important role during the initial phase of beam
expansion. Furthermore, the magnetic ficld determines the beam radius and beam density.
However, the calculations did not take into account any possible heam instabilities.

In this paper we study radial expansion of electron beams injected parallel to the mag-
netic field. We have used a two-dimensional electrostatic particle code to simulate the electron
beam injection from an isolated finite equipotential conductor into a plasma. In contrast to
Winglee and Prichett [12], we concentrate on cases of high spacecraft charging, which are
more applicable to SEPAC electron beam firings. It is shown that radial expansion is sig-
nificant. We also surveyed the simulation results to determine the dependence of the beam

expansion on the background magnetic field, beam density, and beam velocity.
SIMULATION MODEL

To study electron beam injection from a conductor, we modified a 2-D particle-in-
cell code, DARWIN, which was originally developed at Los Alamos National Laboratory
[14]. Here we present the simulation results in the electrostatic limit. Realistic modeling of
beam injection from a spacecraft required injecting an electron beam from a finite isolated
conductor. The simulation geometry is shown in Figure 1.

Particles are injected from the spacecraft surf%ce in the simulation box every time step.
The number of injected electrons per time step per cell is N.(e/q.)(ny/n.)vsAt where N, is
the number of ambient electrons per cell, At is the simulation time step, ny/n. is the ratio of
the beam density to ambient density, and e/q. is the ratio of the ambient electron charge to

the beam electron charge. The beam electrons have fractional charge and mass, which allows



an increase in the number injected per time step. This larger number for the same beam
density reduces numerical noise. These particles are placed in the simulation box at positions
r = Rvy At where x is the distance {rom the conductor surface, vy, is the injection velocity, and
R is a random number between 0 and 1 for each injected particle. This method tends to fill in
the fan between r = 0 and « = v, At. The injected particles are randomly distributed across
the beam in the y direction. All particles which strike the spacecraft surface are absorbed
and their charge is accumulated.

Treating the spacecraft surface as a finite isolated equipotential conductor in an ambient
plasma was accomplished by using the capacity matrix method [11,15]. The capacity matrix

relates the charge on each grid point on the spacecraft to the corresponding potential.
g = C;9; (1)
J

where C;; is the capacity matrix, ®; is the spacecraft potential, and the sum j is over every
grid point on the spacecraft. The capacity matrix is found by placing a unit charge on one
point of the spacecraft surface with all other points zero and then solving for the potential.
The values of the potential at each point on the spacecraft represent one column in the inverse
capacity matrix A = C~'. Repeating the process for each node then generates the full inverse
matrix. The capacity matrix is obtained from the inverse of this matrix. This process is
carried out only once at the beginning of the program. During the program the code first
solves Poisson’s equation for the electric potential ®, with charge evenly distributed on the

spacecraft surface. Second, it uses the capacity matrix of the conductor to redistribute the



charge and maintain the spacecraft surface at an equipotential using the formulae:

Agi = Z("'T:A,‘((I)pq — ;) (2)
vl

b, = Z Ciif Z ¢ (3)
23 L¥)

where Ag; is the charge that is added to each grid point on the spacecraft. Using the redis-
tributed charge density, the code again solves Poisson’s equation for the electric potential of
the spacecraft.

We use a periodic boundary condition for the lower boundary at y =0 and the upper
boundary at y = L, where L, is the simulation length in the y direction. The electrostatic
potential at ¥ = 0, ¢(x = 0,y), is constant. We assume the potential is zero at the right
boundary at # = L, where L, is the simulation length in the & direction. The right boundary
condition approximates the potential at infinity.

Ambient ions and electrons are initialized uniformly in the system with a uniform mag-
netic field in the x direction. Both the ambient ions and electrons have Maxwellian velocity
distributions with the same temperature, T, = T; where T, and T; are the electron and ion
temperatures, respectively. At the right and left boundary, the code specularly reflects all

particles.
SIMULATION RESULTS

The simulation uses a 512A x 128A grid in the x and y directions, respectively. The
spacecraft is represented by a rectangular box centered on z = 102A and y = 64A with size

4A x 32A in the 7 and y directions, respectively. The grid size, A, equals the Debye length of
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the ambient electrons defined as Ay = a./wp. where a, = (2/1'(./1)”)’/2 is the thermal velocity
of the ambient clectrons and w,, is the ambient electron plasma frequency. We choose the
ion to electron mass ratio to be 100, and a. = 0.001¢ where ¢ is the speed of light, a unit of
the simulation. We use a reference electron gyrofrequency Q.. of 0.25w,., which is close to
the ionospheric value of 0.3w,.. The simulations use a time step At = D.()Bgu;fl and 131,072
particles for the ambient plasma. For the reference case the electron heam has a width of 4A,
an injection velocity of v, = 10a. along the x axis, zero initial thermal velocity, and a density
ratio of ny/n, = 10.

Figures 2-4 show results of electron beam injection for the reference parameters. The
phase space plot  — v, at w,t = 30 in Figure 2a indicates that the point at which beam
electrons are stopped (stagnation point) is very close to the conductor surface. Due to the
high beam density the spacecraft becomes positively charged, causing the beam electrons to
be rapidly drawn back to the spacecraft surface. The average electrostatic potential of the
spacecraft in this case is & 94% of the beam energy. Some electrons at the front of the
beam are accelerated to velocities higher than the original beam velocity. This is due to
the bunching of beam electrons behind the beam head. Also some returning beam electrons
overshoot the spacecraft and are drawn back on the wake side. The configuration space plot
given in Figure 2b shows that the electron beam expands radially. Figure 3a shows a contour
plot of the beam density where the contour line delineates the beam edge. From this plot
the beam radius is approximately r, = 40A. The beam electron gyroradius p. = vy/€c is
also 40A where v, is the initial beam velocity. It is apparent from earlier configuration space

plots that the maximum beam expansion occurs near the stagnation point, which is very
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close to the spacecraft surface. The highest beam density is at the stagnation point. of the
beam (Figure 3b). This is in agreement with analytical results for one-dimensional electron
heam injection into a vacuum [16]. Physically, the high density at the stagnation point is
understood in an approximate sense by the conservation of flux nyv,. At the stagnation
point, where the average beam velocity is smallest, the density should be highest assuming
substantial expansion of the beam has not occurred.

Figure 4a and 4b show that the maximum transverse electric field E, and the maximum
longitudinal electric field £, occur where the beam density is highest. The transverse velocities
to which the beam electrons are accelerated depend on the time spent in the stagnation region,
where the transverse electric fields are largest. This can be estimated from the width of the
transverse electric field region, approximately 8A, and the initial beam velocity. From these
values it is apparent that the beam particles can be accelerated to 75% of the initial beam
velocity. In general beam electrons travel through the stagnation region with velocities lower
than the initial beam velocity. So they spend more time in the stagnation region and are
accelerated to higher velocities. After the stagnation region the transverse electric field E,
is smaller (Figure 4a) and the average beam velocity is higher (Figure 2a). Therefore, the
beam electrons receive their largest tranverse kick very close to the spacecraft and experience

smaller transverse impulses from that point on.
Variation with Magnetic Field Strength

Figure 5 shows beam density plots at wy.t = 30 where the contour lines indicate the

beam envelope. The magnetic field 2. /wp. is 0.25, 0.5, and 1.0 down the page with all other
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parameters fixed. Note that the maximum beam radius decreases with increasing magnetic
field. The ratio of the maximum heam radius to the electron gyroradius r,/p. is approxi-
mately 1 for each of these cases. This indicates that independent of the magnetic field the
beam electrons receive the same transverse kick and expand to p. in the range of ionospheric
magnetic field values. In Figure 5¢, where Qee/wpe = 1.0, no beam clectrons are in the wake
region of the spacecraft. The maximum width beam electrons achieve, 2p., is smaller than

the spacecraft width. So all returning beam electrons strike the spacecraft surface.

Variation with Beam Density

Figure 6 shows simulation results at wy.t = 30 varying the beam to ambient plasma
density ratio ny/n. from 1 to 20 for the cases of Qe /wpe = 0.25 (solid line) and 0.5 (dotted line).
The ratio r3/p. is between 0.725 for ny/n. =1 and 1.3 for ny/n. = 20. The maximum beam
radius gradually increases with beam density. This indicates that the transverse kick that
the beam electrons receive gradually increases with beam density. The relative magnitude of
the transverse kick can be obtained from the average velocity of the beam electrons through
the stagnation region. The average velocity gives a rough idea of the time that the beam
electrons are accelerated by the transverse electric fields E, in the stagnation region. Figure
7 shows the average velocity of beam electrons at the stagnation point versus beam density
for Q. /w,e = 0.25 (solid line) and 0.5 (dotted line) at wy.t = 30. The velocity is averaged
across the beam and the stagnation point is taken to be the point where the longitudinal
electric field E, is a maximum. The average velocity decreases with increasing beam density

for both values of magnetic field. This indicates that beam electrons spend more time in the
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stagnation region for higher density beams and are, therefore, accelerated to higher transverse
velocities. The ratio of the electron beam Debve length Apy to the ambient electron Debye

length Ay, which is

Apb _ (U_b)(”_l)l/Z’ (1)

Ad . Ny

gives an understanding of this velocity trend. The electron beam Debye length is an indication
of the charge separation distance between the spacecraft and the beam stagnation point. The
ambient electron Debye length indicates the distance above which ambient electrons neutralize
excess charge. As this ratio decreases the beam clectrons feel the Coulombic potential of
the spacecraft more since ambient electrons have a harder time shielding the effects of the
retarding potential drop. Therefore, the beam electrons travel with lower velocities. This
ratio decreases with increasing beam density ny, as nb_l/z following the trend of the average

velocity in Figure 7.
Variation with Beam Velocity

Figure 8 shows the beam radius normalized to the electron gyroradius ry/pe as a function
of initial injection velocity vy at wpet = 30. The injection velocity vy/a. where a. 1s the ambient
electron thermal velocity is varied between 2.5 and 20.0. All other parameters are the same as
in the reference case. The radial expansion is largest for small velocity injection and smallest
for high velocity injection. The relative magnitude of the transverse kick can again be inferred
from the average velocity of the beam electrons through the stagnation region. Figure 9 shows

the average velocity of beam electrons at the stagnation point versus initial beam injection
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velocity at w, ! = 30. The average velocity increases with the initial beam injection velocity.
Beam electrons spend more time in the stagnation region for lower injection velocities and
are, therefore, accelerated to higher relative transverse velocities. This velocity trend can
also be interpreted from the ratio of the beam electron Debye Jength to the ambient electron
Debye length. This ratio increases linearly with the initial beam injection velocity. As the
beam injection velocity increases, the ambient electrons are more able to shield excess charge
buildup over the beam electron Debye length. Therefore, the beam electrons travel with

higher velocities through the stagnation region, which is in agreement with Figure 9.

DISCUSSION AND CONCLUSION

We have examined the radial expansion properties of a nonrelativistic electron beamn
injected along magnetic field lines into a background plasma. We have concentrated on
high beam current cases where spacecraft charging is significant. In our reference case with
ny/n. = 10 and vy/a. = 10, the beam expanded to twice the beam electron gyroradius ps.
The beam electrons receive a large transverse kick from beam electrons which have built up
at the stagnation point. This kick, which occurs very close to the injection point, determines
the beam envelope from that point on. We have found that the transverse energization of
the beam electrons is independent of the strength of the magnetic field for values between
Qe /wpe = 0.25 and 1. The beam envelope is twice the beam electron gyroradius p.. We have
also found that the beam envelope increases with beam density. The average velocity of beam
electrons through the stagnation region decreases with increasing beam density. The average

velocity indicates the time heam electrons spend in the stagnation region and, therefore, how



long heam electrons are accelerated by the transverse electric fields. The final transverse
velocity of the beam clectrons and, thus, the beam envelope increases with beam density.
Variation of the initial beam injection velocity indicates that the heam envelope decreases
with increasing beam injection velocity. The average velocity of beam electrons through the
stagnation region increases with beam injection velocity. Therefore, beam electrons with high
injection velocity are accelerated to lower relative transverse velocities than heam clectrons
with low injection velocities. The ratio of Apy/A4. which is an indication of how well beam
electrons are shielded from the charged spacecraft surface by the ambient electrons. can be
used to explain the de[)m‘]df‘nco of beam radius on beam density and beam injection velocity.
This dependence is evident from Figure 7 where the average beam velocity at the stagnation
point drops off approximately as nb_l/ * and from Figure 9 where the average velocity increases
almost linearly with beam injection velocity vy.

The spacecraft potential energy in each of these runs varied hetween 60% and 100% of
the beam energy except for the cases of low beam density. These results are most applicable
to the SEPAC electron beam injection experiments where the Shuttle was charged to the
beam energy. In future work we will address the problem of beam radial expansion when

collisional ionizations of neutrals by the beam electrons is taken into account.
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FIGURE CAPTIONS

Fig. 1. Simulation configuration.

Fig. 2. Results of simulation for ny/n. = 10 and v/a. = 10 at w, ! = 30. (a) The beam
electron phase space in the -v, plane and (b) the positions of beam clectrons in the x-y
plane. The position is normalized by the Debye length and the velocity is normalized by
the initial beam injection velocity.

Fig. 3. Density plots of beam electrons at wy.t = 30 for ny/n. = 10 and vy/a. = 10. (a)
Contour lines delineate beam envelope. (b) Profile of beam density along beam showing
maximum density close to spacecraft surface.

Fig. 4. Profiles of maximum field quantities across beam at wp! = 30. (a) Maximum trans-
verse electric field £, and (b) maximum longitudinal electric field £

Fig. 5. Density plots of beam electrons at wpet = 30 for ny/n. = 10 and vy/a. = 10. Contour
lines delineate beam envelope. Q. /w,. = (a) 0.25, (b) 0.5, and (c) 1.0

Fig. 6. Electron beam envelope radius ry/p. versus ny/nc at wpe = 30 for v;/a. = 10.

Fig. 7. Average velocity v, at the stagnation point normalized to ambient electron thermal
velocity a. versus ny/n. at wye = 30 for vp/a. = 10.

Fig. 8. Electron beam envelope radius r,/p. versus initial beam injection velocity vs/a. at
wpe = 30 for ny/n. = 10.

Fig. 9. Absolute value of average velcity v, at the stagnation point normalized to ambient
electron thermal velocity a. versus initial injection velocity vy/a. at wpe = 30 for ny/n. =

10.
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